Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction
نویسندگان
چکیده
منابع مشابه
Distant Supervision for Relation Extraction with Ranking-Based Methods
Relation extraction has benefited from distant supervision in recent years with the development of natural language processing techniques and data explosion. However, distant supervision is still greatly limited by the quality of training data, due to its natural motivation for greatly reducing the heavy cost of data annotation. In this paper, we construct an architecture called MIML-sort (Mult...
متن کاملNoisy Or-based model for Relation Extraction using Distant Supervision
Distant supervision, a paradigm of relation extraction where training data is created by aligning facts in a database with a large unannotated corpus, is an attractive approach for training relation extractors. Various models are proposed in recent literature to align the facts in the database to their mentions in the corpus. In this paper, we discuss and critically analyse a popular alignment ...
متن کاملRelation Extraction Using TBL with Distant Supervision
Supervised machine learning methods have been widely used in relation extraction that finds the relation between two named entities in a sentence. However, their disadvantages are that constructing training data is a cost and time consuming job, and the machine learning system is dependent on the domain of the training data. To overcome these disadvantages, we construct a weakly labeled data se...
متن کاملUsing Cost-Sensitive Ranking Loss to Improve Distant Supervised Relation Extraction
Recently, many researchers have concentrated on using neural networks to learn features for Distant Supervised Relation Extraction (DSRE). However, these approaches generally employ a softmax classifier with cross-entropy loss, and bring the noise of artificial class NA into classification process. Moreover, the class imbalance problem is serious in the automatically labeled data, and results i...
متن کاملMulti-instance Multi-label Learning for Relation Extraction
Distant supervision for relation extraction (RE) – gathering training data by aligning a database of facts with text – is an efficient approach to scale RE to thousands of different relations. However, this introduces a challenging learning scenario where the relation expressed by a pair of entities found in a sentence is unknown. For example, a sentence containing Balzac and France may express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing & Management
سال: 2020
ISSN: 0306-4573
DOI: 10.1016/j.ipm.2019.102096